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Abstract

Given a small pretopos P, we consider the category Mod(P) of models of P indexed over
topological spaces. By considering indexed categories of coalgebras, we show that for any
indexed functor F :®Mod(P)— Mod(Q), where Q is another small pretopos, the functor F':
Mod(P) — Mod(Q) preserves filtered colimits. © 1998 Elsevier Science B.V. All rights
reserved.

1991 Math. Subj. Class.: 03C20, 18A15, 18A25

1. Introduction

A pretopos is a category P that is left exact, has strict initial object, stable disjoint
finite coproducts and stable quotients of equivalence relations (see [7]). A functor
between pretoposes that preserves the structure is called elementary. In [8] Makkai
and Reyes explore the relation between pretoposes and first order coherent theories.
We can regard a small pretopos P as a first-order coherent theory. The category of
models, Mod(P), for the coherent theory P is the full subcategory of Set” whose
objects are elementary functors. The category Mod(P) has filtered colimits and they
are preserved by the inclusion Mod(P)—»SetP. In general, we cannot guarantee the
existence of other kinds of colimits nor can we guarantee the existence of any kind
of limit in Mod(P). However, as a consequence of L.os theorem (see [7]) we have
that the ultraproduct in Set® of a family of elementary functors is again an elementary
functor. That is, Mod(P) has ultraproducts and they are pointwise.
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Considering filtered colimits, it seems reasonable to ask what extra structure on
Mod(P) and Set would guarantee that a functor F:Mod(P)— Set preserving the
extra structure, preserves filtered colimits.

Mod(P) can be the given structure of an indexed category over the category Top of
topological spaces and continuous maps, in the sense of Paré and Schumacher [9], i.e.,
given a pretopos P define the Top-indexed category Wtod(P) as follows: For a topologi-
cal space X, the category Dod(P)¥ is the full subcategory of SA(X )P whose objects are
elementary functors, where SA(X) is the category of sheaves over X. Given another
topological space Y and a continuous function f:Y — X, define f *: Mod(P)¥ —
Mod(P)Y by composition with the usual f*:Sh(X)— Sh(Y). This definition works
because f*:Sh(X)— Sh(Y) is an elementary functor. The category Set can also
be indexed. Denote by Set the Top-indexed category such that Set® =Sh(X) and
f*: Get¥ — et is the usual f*:Sh(X)— Sh(Y). Then Set is the category of sets
suitably topologized (see [4]). Notice that Mod(P)! =Mod(P) and Get! =Set. We
show that for any Top-indexed functor F :9od(P) — Set we have that the functor
F1:Mod(P)— Set preserves filtered colimits. To do this we generalize a result of Lever.

Lever in [5] showed that for any Top-indexed functor F: Set — Set, the functor
F':Set— Set preserves filtered colimits. Furthermore, the assignment F— F' is an
equivalence ()!: Top-ind(Set, Set) — Filt(Set, Set) where Top-ind is the category
of categories indexed over Top and Filt is the category of categories with filtered
colimits and filtered colimit preserving functors. We generalize the result in the fol-
lowing way: Given a category A with filtered colimits and products we construct a
Top-indexed category . For a topological space X, the category A% is the category
of coalgebras for a comonad defined on A where |X| is the underlying set of the
space X. We will have that A = A (see the definition below). For A= Set we obtain
A = Set. We show that given categories A and B with filtered colimits and prod-
ucts in which the filtered colimits satisfy an extra condition with absolute equalizers
and products, if 2, B are their corresponding Top-indexed categories and F : U — B
is a Top-indexed functor then F':A — B preserves filtered colimits and the functor
()! : Top-ind(A,B) — Filt(A,B) is an equivalence of categories. We follow the same
strategy for the proof as the one in [5].

When we apply the above construction to a presheaf category A=Set” we denote
the result by Get”. With P a pretopos we will have Mod(P)* a full subcategory of
(Set?)X with £*:Mod(P)X — Mod(P)? the restriction of f*:(Set?)¥ — (Set™)?.
This observation will allow us to prove that for any Top-indexed functor F : Mod(P) —
Get we have that F!:Mod(P)— Set preserves filtered colimits.

In the general case we take full subcategories Ay of A and By of B where A and
B satisfy the conditions mentioned above. Under some closure conditions on these
subcategories we obtain subTop-indexed categories Wy, By of A and B. In this case,
for any Top-indexed functor F : 2y — By we have that F!: Ag — By preserves filtered
colimits.

It is worthwhile to note that ultraproducts play a central role throughout the paper.
Given a filter (I, %), that is to say, a set [ and a filter # on I, and a category A
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with filtered colimits and products we define the reduced product functor [];: AT A
such that for any (a;);: (4;)7 — {4}); in Al we have [ls )= hmjeg- ]_LEJA], and

Iz (@)= hﬂ JeF HjE ;a;. In particular, when we have an ultraﬁlter (I,%) and a

Top-indexed functor F : 2 — B we obtain a natural isomorphism g4 : F' o [Io—1lye
F!. From these natural isomorphisms we can recover the indexed functor F uniquely.
The same can be said for a Top-indexed functor F : Ay — By.

2. Continuous families of coalgebras
2.1. Notation

All through the paper we assume that A and B are categories with filtered colimits
and products, X, Y are topological spaces and f:Y — X is a continuous function.
Given a point x € X denote by ¢y = {U C X | U is an open neighborhood of x}. Denote
by A;={J CX|J is a neighborhood of x}. .4; is clearly a filter on |X|. Notice that
[Ty ((4x)) =~ lln’ vee, 1 ey 4y for any (4s) in Al. This means that we can restrict to

open sets when using the universal property of the colimit to define an arrow out of
[ 1 ({4x)). Given a filter (1, ) and an object (4;); in A’ we denote its image under
the reduced product functor ], by [[4:/#.

2.2. Continuous families of coalgebras

The definition of the cotriples we need is a direct generalization of the cotriples
whose coalgebras are categories of sheaves over topological spaces.

Definition 2.1. Define the cotriple G* = (GX, ¢¥, 5% ) over A*! as follows: The functor
GX A A s the unique functor such that for every x € X the triangle

commutes, where p, is the xth projection. Define &¥ : G¥ — 1 such that the xth com-
ponent (eX (4,)), of ¢¥(4,) is the unique map that makes the diagram

X
HA),/-/V;, (6 (Ax»x N A

S A

Hyel Ay
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commute for every J € 4;. Now, we define 6¥ : G¥ — G¥G*. Let x€ X and U € 0,.
Induce the unique map {y:[1,cp 4w — Il,cp (114-/4%) that makes the diagram

Moy Ay —2 T,y 1A, /4,)
iy 7
AN

commute for every u € U. Notice that we need U open so that it is also a neighborhood
of u. Define the xth component

@ (Do [T ufte = TI(TL 41 45) /4

of 6%(4,) as the arrow determined by lim y¢g, {u.
—

It is not hard to see that (G¥,e¥,8%) is indeed a cotriple. As a matter of fact, this
s p

S
cotriple is induced by the adjunction Al f’ A where O(X) is the category of

opens of X with inclusions as arrows, S is the stalks functor: for 6: F — F' in A% )op,
we have S(F)= (lim y5, FU), and S(g)= (1im Usx Ou)yx; and R is such that for any

(fode: (As)s = (Ae)y in A we have R{dy)o(U) =TT,y 4x and R{f)(U) =Lcy fo
(see [4]).

Definition 2.2. The Top-indexed category U is defined as follows: A is the category
(A1)gx of G¥ coalgebras. Let (7,)y : (Ae)x — ([]4u/A:)x be a coalgebra in A¥. Given
y€Y and J €47, we have that f~!J €.4;. There is a unique arrow

% HAw/'Afy_’ HAfv/'/‘fy
that makes the diagram

;
A, /A, — S TIA, /4,

il[ It}_ll

IL.., A, —(f)'—’ LA,
commute for every J € A7y, where gy ][, c; 4w — Apy is the projection. Let f *{te)x)
=(&y01p)y 1 (dpy)y = ([ Are/Ay)y. Given an arrow (ay):(tx) = (t;) in UY define
FFax):)= {ary)y-
It is not hard to show that this does define a functor f*:2* — A”. Furthermore,
A is then a strict Top-indexed category, that is to say, all the coherence isomorphisms
are identities.
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We could have defined the category at X to be the full subcategory Sha(X) of
A’ whose functors satisfy the usual exactness condition. Under the assumption
that A is complete, we obtain a right adjoint ¥ : %¥ — A’¥  to the comparison func-
tor @: AP _, ¥ (see [2]). It is shown in [10] that for any presheaf F' we have that
Y @F is a sheaf, Furthermore, in the same paper it is shown that the composition Y& is
left adjoint to the inclusion Sha(X)— AYXN™ if the stalks functor S : Sha(X)— A re
flects isomorphisms and filtered colimits of monomorphisms are monomorphisms in A.
This reflector is used in [4] to define /™ : Sha(X) — Sha(Y) for any continuous function
f:Y—X. Also from [10], if the stalks functor S:Sha(X) — A preserves equalizers
of S-split pairs then ¥ : 9¥ — AP g tripleable, and as a consequence, the categories
Sha(X) and AX are equivalent.

We however do not require A to have equalizers, and pursue our investigation with
the categories of coalgebras as stated above. Observe that the definition of f™* is fairly
straightforward in this case. We point out that the condition that the stalks functor
S:Sha(X)— AlX] preserves equalizers of S-split pairs is closely related to the condition
given in Section 2.4 below, relating filtered colimits and absolute equalizers that we
do require A to satisfy.

When A is the category Set, we have that U is equivalent, as an indexed category,
to Set.

2.3. Examples of coalgebras

Let us take a look at several topological spaces and their corresponding coalgebras.

Let (I, %) be a filter. Define the topological space Iz whose set of points is
TU{ooz}, with cog ¢ 1. The topology given by U CIU{ooz} open iff [oog U
implies U — {oc0z} € #]. A* is equivalent to the category whose objects are arrows
T: Aoy — || 4i/F, and whose morphisms t— 7’ are families (foos, (fi}) : (Aoogs (4i})
— (A’ _,{4})) that make the square

[e o¥ 24
T
Asoy —— 14/ F
foog 517

Aoy — 141/ F
T

commute. Assume now we have another filter & over the same set / such that & C &.
We define the continuous function hgg : I — Iz such that hgg(0c0g) =00s and hez (i)
=i for all i € 1. In the description given above the action of A% : AW W s as fol-
lows. The image of 7: Ao, — [ 4:/# is the composition A, — [14;/F — [14:/6,
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where the second arrow makes the diagram

MA/F » [1A/&

HJ'EJ AJ'

commute for every J € %. Given Jy CI, denote by £(Jy) the filter generated by J,.
Notice that [[4i/S(J)=]];c;, 4

Let X be a topological space and xo € X. Let I =]X| — {x¢} and define &, ={J —
{xo}|J € A5} F, is a (possibly degenerate) filter on /. Denote /g by I;,. We have
a continuous function Ay, : I,, — X such that A, (co) =xp and h,,(u) =u for every ucl.
For any coalgebra (7,) in U¥ we have that

By () = (e = [T Aube = T] /).

where the last arrow is obtained by omitting the factor x in all the products.

Lemma 2.3. If filtered colimits commute with finite products in A, then ., can be
Tx,
recovered from the composition Ay, —> [ 4u/ Nz, — [ 4u/ %

Proof. The condition implies that
HA“/'/V):’O i) Axo X HA“/'%O

Since the diagram

A, —2T1A I,

x l(e’%rx»,o

A

X0

commutes, the result follows. [

Denote the Sierpinski space by S, i.e., S has two points, 0, 1, and its only nontrivial
open set is {1}. The category U° is isomorphic to A~. Given jo€J CI we have a
continuous function A;,;:S — I¢ sy such that #;,;(0) =coy(sy and hjs(1)=jo. Then

K sends T: Aoy, = [Lies 4 10 dooyy, —— [Ljes 4 ™ 4,

Let D be a small directed preorder. Denote by 7D the topological space whose
points are the objects of D endowed with the Alexandroff topology. That is, U C TD
open if and only if U is an up-closed subset of D. Given d in TD we have that A4,
has a minimum, namely {d’|d’ >d}. Therefore, [[ 44/ A3 ~ [];/4Aa for any family
(4). Tt follows that A™® is isomorphic to AP, Denote by T’D the topological space

obtained from TD by adding an extra point, co. The topology of 7'D consists of those



F. Marmolejo ! Journal of Pure and Applied Algebra 130 (1998) 197-215 203

sets U such that U=0 or [co€ U and U — {oo} is up-closed in D]. The inclusion
ip: TD — T'D is continuous. For reasons that will become clear in the following section
we want the functor if; : A7 — AT to be an equivalence. To prove this we will use
Beck’s tripleability theorem (see [6]). However, we need an extra condition on A that
we introduce in the next section.

If D=2, the ordered set with two elements, 0 and 1, with 0<1, then 7D is
Sierpinski’s space S. In the topology of T'2 it is not possible to distinguish the points
1 and oco. This implies that i : T2 LA™ is an equivalence.

2.4. Absolute equalizers

Let D be a small directed preorder and H : D —A> be a diagram. Given d €D
hod
denote Hd by Hod = Hyd.
hd

Definition 2.4. We say that filtered colimits respect absolute equalizers in A if for
every directed preorder D and any diagram H : D — A? the following condition is
satisfied. If for every d € D the pair (hod, hd) has an absolute equalizer e, : E; — Hod
and the pair

lim  hod

11m Hod__,hm Hd

lim h1d —
—d

has an absolute equalizer, then the diagram

lim hod
hmd » e 0
hm E;——lim, Hod ——=3 lim, Hid
’ lim hld ’
—d

is an equalizer.

Even though the condition is rather technical, notice that it is satisfied in any left-
exact category with filtered colimits in which filtered colimits commute with finite
limits. In particular, any locally finitely presentable category satisfies the condition.

2.5. Coalgebras for the space T'D

We assume that filtered colimits respect absolute equalizers on A. Under this cir-
cumstances we show tlllat the category ATD is equivalent to AP.
Define L: AP — ATl such that L({ds ~% Ay }a<ar)=(lim, Aa, (A4)a), Where the
—

first coordinate corresponds to the point oco. If
{fa}: {4a 2 ApYa<a — {Ba s BaYdsar

is an arrow in AP, then define L({fd}):(li_)md S, (1))
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Lemma 2.5. If filtered colimits respect pointwise absolute equalizers and D is a small
directed poset, then the functor L:AP — AT’ defined above is cotripleable.

Proof, We use Beck’s tripleability theorem (see [6]). First, we need a right adjoint.
Define R:A"P! — AP such that

Ao X Dggr
R((Aoo, (Aa))) = { Aoo X [] Aor——40ox ] Aar ¢

d">d d'r>d’ d<d’

where pgs makes the diagram

Pya a"
Hd“zd A ‘—’Hd"zd/ A

Tat’ Tqtt

Ad” ——-———)Ad//

lAd//

commute for every d” >d. If (foo, {f4)): (Aoos (Aa)) — (Boo, (Ba)) then

R(foor (fa)) =3 foo x [] %

d&'>d

R is right adjoint to L.

L clearly reflects isomorphisms.

Suppose {f3},{9a}:{Aa — Aa' }a<a» — {Ba — Ba' }a<a is a parallel pair in AP such
that L({f3}),L({g4}) has an absolute equalizer

(llm Sa{fa))
(o, (e (
(Exo» (E ))——--—*(llm Ag,{Aq)) =——= (lim, By, (Ba)).

(1lm 9a,(9a)) —

Projecting we obtain, the following absolute equalizers:

lim; fa
eq fd € - _ .
Ed — Ad __+Bd Eoo = hmdAd E—— hmdBd
9a - lm,g, ~

where d is any element of D.
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Therefore, for every d <d’ in D we can induce an arrow E; — E; such that

e
Ej— A4,

Edf —-)Ad/
€q/

commutes. It is easily seen that we obtain an equalizer diagram

{fa}
{Eq— Eq }a<a fea} {dq = As Ya<a ——={Bas— Bu }a<a-
{94}

Since filtered colimits respect pointwise absolute equalizers we obtain that L pre-
serves these equalizers. It is clear that L reflects these equalizers. Therefore, L is
cotripleable. [

Denote the comparison morphism by &p AP 7P It is not hard to see that a
pseudo-inverse for the composition A'> = =, AP 22, 7' g j* where i=ip:TD—
T'D is the inclusion. Let ¥p = (QITD R (L AP).

Corollary 2.6. If filtered colimits respect pointwise absolute equalizers in A and D is
a small directed poset, then the diagram

_________)AD

\ lim
—

commutes up to isomorphism.

3. Filtered colimits and indexed coalgebras

We will assume that in A and in B filtered colimits respect absolute equalizers. We
then show that for any Top-indexed functor F : 2 — B the functor F' : A— B preserves
filtered colimits. To do this it is enough to consider directed colimits (see [1]).

Lemma 3.1. If F .U — B is a Top-indexed functor, then the diagram
w—=, A
F§ F?

B8 B?

commutes up to isomorphism (where F2 =(F')?).
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1
—_—

Proof. Consider the diagram 1 & S in Top, where the arrow 1 ‘picks’ 1 €S and

the arrow 0 ‘picks’ 0 € S. Let o, d; : A2, A be the domain and codomain functors.
Let id : A— A? be the functor such that id(A)=14 and id(f)=(f, f). Consider the
diagram

S = Y 2
| x / B‘P
A —— A’

0% 5% | 1# o*ls*ﬂl* aolidﬂal 5, i

PARS

B B

The front and back faces commute sequentially. The right face clearly commutes.

Since F is indexed the left face commutes sequentially up to isomorphism. Given

{Lag»a0)
an algebra A -, Ao xA4; in QIS, consider the morphism (14,,0):5*4p— (14,

«) in AS. Apply FS and use coherence. [

&
gl

Lemma 3.2. If in A and in B filtered colimits respect absolute equalizers and F : A —
B is a Top-indexed functor, then for every small directed preorder D the diagram

QITD - AD
FTD FD
%TD BD

~

commutes up to isomorphism.

Proof. Let d,d’ €D be such that d <d'. Define the functor oyy :2— D such that
0g2/(0)=d and ay4(1)=d’. Define the continuous function fz4::S — TD such that
Baar(0)=d and Buy(1)=4d’. Consider the diagram

4 Bl

Now use Lemma 3.1. O

o
%]

R

w©
[
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Corollary 3.3. If in A and in B filtered colimits respect absolute equalizers and

F:U—B is a Top-indexed functor, then for every small directed preorder D the
diagram

’ ¥p
QIT D AD

FTD FD

%T/D BD

¥p
commutes up to isomorphism.

Proof. Since F is a Top-indexed functor the square

ok
5]

QIT/D QID

FT’D FID

7'D D
B —— B
iy

commutes up to isomorphism. Paste this square with the one from Lemma 3.2. O

Theorem 3.4. If in A and in B filtered colimits respect absolute equalizers and
F:U— B is a Top-indexed functor, then F': A — B preserves filtered colimits.

Proof. As we pointed out at the beginning of this section it is enough to consider
directed colimits. Let D be a small directed preorder. Consider the diagram

Use Corollaries 3.3 and 2.6. [
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This means that we have a functor ( )! : Top-ind(, B) — Filt(A, B).

4. Reduced products and ultraproducts
Here is another condition we need B to satisfy. Given a filter (I, %), let €5 = {¥% | %

is an ultrafilter on I and & C %}. If % € €5 there is a unique arrow iy : [[Bi/F —
11 B:/% making the diagram

[1B/F fry I1B,/%

I, B,

commutes for every J € %.

Definition 4.1. We say that ultraproducts determine reduced products in B if for every
filter (I, #) and every family (B;) in B’ the family

<iyq1 : HBi/g; - HBi/%>ﬂYl€<€f
is jointly monic.

Ultraproducts determine reduced products in Set due to the fact that for every filter
(I, #) we have & = (Vycq, U.

5. Transition natural transformations

Assume F : U — B is a Top-indexed functor. Let (7, %) be an ultrafilter. A coalgebra
in A* is determined by an arrow t:A, — HAi/ﬂll in A. In particular, the arrow
114, : [14i/% — 11 4i/% determines a coalgebra in A, Then

Fl*(Ippa): 00 (F* (0 — [T F* Uiaga))-

Using the coherence isomorphisms Foo* — co*F 4 and Fi* — i*F* we obtain an arrow
vra(A;) : F([1A4:/%) — []FAi/%. 1t turns out that yry is a natural transformation as
shown
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We can actually give an explicit description of ypg. We will need the following
lemma

Lemma 5.1. Given a Top-indexed functor F : 0 — B and an ultrafilter (I, %) we have
that for every coalgebra c:Ao — [[Ai/% the diagram

F(A.) Fo FA1A,/%)
ZJ JyF%
qr F*(0) Iy
o*(F*(0)) I1i* F* (o) —=—— TIFAJ%
commultes.

Proof. Consider the morphism (g, (l4,)):0 — Iy, in A apply F« and use co-
herence. O

Lemma 5.2. For any family (4;); in A" we have that yrq(4;); is the composition

F(HA,/%) 'i) limjequ ( H Aj) - HFA,/%,
- jes

where the isomorphism on the left is due to the fact that F preserves filtered colimits
and the arrow on the right is limjeq (Fn;) with n;: [[ 4;— 4; the projection.

Proof. Let J € %. Recall from Section 2.3 the definition of the continuous function
hy: S — Ip(y for every j€J. The square

*

arr — 2, S
F.V(J) F.y’

by

commutes up to a coherent isomorphism. Thus, for an algebra 7:4. — [] jes 4y n
A" we obtain the commutative diagram

F* (=v)

FA,—= 0'F'(m;7) 1'F* (nt) —=——— FA,
oot F1ZO - pIF(J) ol
F ® F'9O () HjEJj F (T)T JE ©
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Notice that by Lemma 3.1 the top composition in the above diagram is F(m;7). Also,
form Section 2.3, recall the definition of the continuous function hyw(s): Iu — Is).
Using the commutative diagram above and the fact that

I
I us
i T, g
1 I
F Py Fa
I
Blrw %Iw
hysewy

commutes up to coherent isomorphism, it follows that the diagram

FA_ {F(m7)), Hje A, % T1FA,/%
ot F (1) Il P 0/

F™(@i)

commutes, where i;7 is the composition of 7 and i; : Hje ;Aj— []4i/%. Consider the

particular case where ©=1p,,4,, and apply F ' to the morphism

iy
[les 4 ——T14:/%

iy HlA,-/”il

114:/% - 114:/%

/%

in A" Then, with the help of Lemma 5.1 and coherence we have that

F(HjEJAj) (F—nJ>> H}.EJ FAj _'J__, HFA,J%

o] |

F(IA,/ %) — I1FA,/1%
Far ¥ i

commutes. Since we started with an arbitrary J € % the result follows. [J
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Lemma 5.3. Let F:U— B be a Top-indexed functor. For any ultrafilter % € €5
and any coalgebra ¢: Aoy, — [ A/ F in W the diagram

Fig s

FA., —E7 F(T1A,/ %) — F(TTA /%)

N |

% F'%(0) —— [1i" F'% (o) F ~—I1i"F** (o) —=— [IFA /U
F'# (o) lyy
commutes.
Proof. Apply Lemma 5.1 to the coalgebra iz40. Use the fact that the diagram
30
Al vF Q%
Fl7 Flu

Blr gl

*
hys

commutes up to a coherent isomorphism and the coherent isomorphisms arising from
the commutative diagrams

Iq—h‘WL)I_gr I%iL)If
o /:9' X[
1 1
in Top. O

Recall from Section 2.3 the definitions of %, and A,, : [,, » X. With a similar proof
we have

Lemma 5.4. Let X be a topological space and xy € X. For any coalgebra {(z,) in €A
the diagram

x,F* (1) Dy | l'[u"Fx(t,c)/JV,‘0 I l_[u‘FX(rx)/.?"xo

E =1

oo" F*0(mz, ) Mu F"“’(m,,o) 7.,

Lo
F™(nz,)

commutes, where (FX (1)), denotes the xoth component of the coalgebra F*(t,).
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6. From filtered colimit preserving functors to indexed functors

We define now a functor (A) :Filt(A, B) — Top-ind(U, B). Given a colimit preserv-
ing functor H : A — B, define H:UA— B as follows. For a topological space X and a
coalgebra (t,) : (4;) — ([ Au/A;) in AX, define the xth component of H¥((z,)) to be
the composition

Ht,

HA,

H (T] ) —— lim H (1}]14) — [T a4,

Ue sy
where the middle isomorphism is due to the fact that H preserves filtered colimits and
the last arrow is l_i.nzljem,<Hn“>“€U with 7,: [[,c, 4u — 4. the projection. A straight-

forward diagram chasing shows that HX ({t;)) is a coalgebra in B*. Given a morphism
(fe) : (ze) = (z.) in AX define HX((f,)) = (Hfx): H¥({z:)) — HX({z)). Another dia-
gram chasing shows that for every f:Y — X in Top, the diagram

s

ax ar
j_[‘x ﬁy
%X __>%Y
1

commutes on the nose. Thus, H is a stricg\ Top-indexed functor. Given a natural trans-
formation 6 : H — H' in Filt(A, B) define 8% (1,) = (04,). This completes the definition
of the functor ( ).

Theorem 6.1. Let A and B be categories with products and filtered colimits. Assume
that in A and in B filtered colimits respect absolute equalizers, filtered colimits com-
mute with finite products and that reduced products are determined by ultraproducts
in B. Then the functor

() : Top-ind(U, B) — Filt(A,B)

is an equivalence.

Proof. We will show that the functor (A) defined above is a pseudo-inverse for (_)!.
Clearly, (\)'o( )= Irigap). Let F: A — B be a Top-indexed functor and X a topo-

e
logical space. We have to define a natural transformation ¢* : FX — F! | Let (t,) be

a coalgebra in 2. Notice that for any x € X we have x*;'\lx(rx) =F(4,)=FA;. De-
fine the xth component of ¢* (z,) to be the coherent isomorphism x*FX((1,)) — FA,.
We show now that this defines a morphism of coalgebras. Lemmas 5.1 and 5.2 show
that this is the case when X = Iy for any ultrafilter (Z,%). We consider next the case
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X =1Igz for a filter (I, F). Let 6: A4 — [[4;/F be a coalgebra in A, Since in B
reduced products are determined by ultraproducts it suffices to show that for every
ultrafilter 4 on I containing & the diagram

FA. Fo FMAJF) =5 im FALA)
—e#F
4 4
eyl e
=F70) -5 THF () = TIFA,1F ———TIFA,I%

commutes, where the right top horizontal arrow is due to the fact that F' preserves
filtered colimits and the right vertical arrow is induced by the products. The diagram
above commutes as a consequence of Lemma 5.3. We now consider the general case.
We have to show that for any x € X the diagram

X
xFXz) E G, TIw F*( )/,

: .

FAX_;{'__’ F(HAu/‘/V:r) T I_‘i_II,l.IE.A’x F(Hue.lAu) aa— HFAu/‘/V:\:

commutes. It suffices, in face of Lemma 2.3, that the diagram above composed
with

n: [ ] Fdu/ Az — T] FAu/ 2

commutes. This follows from Lemma 5.4.
It is straightforward to show that ¢¥ is a natural transformation and that ¢ is indexed
over Top. O

7. Subcategories closed under ultraproducts

Suppose now that we have a full subcategory Ay of A with filtered colimits and
such that the inclusion Ag— A preserves filtered colimits. Define the Top-indexed
category U, as follows: For a topological space X, 913’ is the full subcategory of
A¥ whose objects are those coalgebras (t,): (4,) — ([]4u/4) such that for every
x €X the object 4, is in Ag. If £:Y — X is a continuous map f* :‘llg — ‘l[g is the
restriction of f*: UAY — AT,

Let D be a directed preorder. Recall from Section 2.5 the topological spaces 7D
and 7'D, the inclusion ip: TD — 7'D and the comparison functor @p : AP ~uTP,
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Lemma 7.1. If filtered colimits respect pointwise absolute coequalizers, then
i*ug P —ulP
is an equivalence.

Proof. The isomorphism A™> — AP restricts to an isomorphism A; —>AD, and the
comparison functor @p,: AP — AT also restricts to @}y = Bp|a, : AD —>QIT PO

Assume that in A and in B filtered colimits respect pointwise absolute equalizers. Let
Ay be a full subcategory of A and By be a full subcategory of B closed under filtered
colimits. Let F: Wy — By be a Top-indexed functor. Notice that all the propositions
of Section 3 remain true if we replace U and B by W, and By. In particular,

Theorem 7.2. With the above notation, the functor F':Ay— By preserves filtered
colimits.

Definition 7.3. With A and A, as above we say that A, is closed under A-ultraproducts
if for every ultrafilter (1, %) the functor [], : AT — A restricts to 11, :A(I) — Ag.

Notice that, when the subcategories Ag and By are closed under ultraproducts we
still obtain natural transformations yr as in Section 5. With the same proofs we have,
replacing U and B with Ay and By, Lemmas 5.1, 5.3 and 5.4.

We do not get and explicit description of the transformations yrs nor are we able
to construct a Top-indexed functor as before due to the fact that we are not assuming
that Ay or By have products.

8. Categories of models

All the conditions we have imposed on the category A are satisfied by any presheaf
category. In particular, let us consider Set” for a small pretopos P. Denote the Top-
indexed category of coalgebras for this category by Set”. We have the full subcategory
Mod(P) of Set” of models. Since Mod(P) is closed under filtered colimits we can
carry out the construction of Section 7, denote the resulting category by Mod”. Recall
the definition of the Top-indexed category Mod(P) form Section 1.

Lemma 8.1. The Top-indexed categories Mod(P) and Mod® are equivalent.

Proof. Let X be a topological space. Given a coalgebra

(te) 0 (M) — (] M/ A2)
in (Mod”)¥ we obtain a functor P— Sh(X) defined by

P (1P} (MyP) — <HM,,P/A§> .
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Conversely, given an elementary functor M : P — Sh(X) we obtain a coalgebra
(o) : (F*M) — < I1 u*M/AQ>
such that o, P is the xth component of MP: (x*MP) — ([[w*MP/.A%). O
As a corollary to Theorem 7.2 we have

Theorem 8.2. Given small pretoposes P and Q, and a Top-indexed functor
F : Mod(P) — Wod(Q),

the functor F':Mod(P)— Mod(Q) preserves filtered colimits.
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